
CS61B Spring 2024

Sorting
Exam Prep 11

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/12
Lab 10 due

4/15
Project 3A due

CS61B Spring 2024

Content Review

CS61B Spring 2024

Insertion Sort

Insertion sort iterates through the list and swaps items backwards as necessary to maintain sortedness.

3 5 1 2 4

Runtime: O(N2)

CS61B Spring 2024

Selection Sort

Selection sort finds the smallest remaining element in the unsorted portion of the list at each time step and

swaps it into the correct position.

3 5 1 2 4

Runtime: Θ(N2)

CS61B Spring 2024

Merge Sort

Merge sort splits the list in half, applies merge sort to each half, and then merges the two halves together in a

zipper fashion.

3 5 1 2 4

Runtime: Θ(NlogN)

CS61B Spring 2024

Quicksort

Quicksort picks a pivot (ie. first element) and uses Hoare partitioning to divide the list so that everything

greater than the pivot is on its right and everything less than the pivot is on its left.

3 5 1 2 4

Runtime: Average case O(NlogN), slowest case O(N2) (dependent on pivot selection)

CS61B Spring 2024

Heap Sort

Heapsort heapifies the array into a max heap and pops the largest element off and appends it to the end until

there are no elements left in the heap. You can heapify by sinking nodes in reverse level order.

3 5 1 2 4

Runtime: O(NlogN)

CS61B Spring 2024

Summary for comparison sorts

Worst Case Best Case Stable?

Selection Sort Θ(N2) Θ(N2) No

Insertion Sort Θ(N2) Θ(N) Yes

Merge Sort Θ(NlogN) Θ(NlogN) Yes

Quicksort Θ(N2) Θ(NlogN) No*

Heapsort Θ(NlogN) Θ(N) No

Stability: a sort is stable if duplicate values remain in the same relative order after sorting as they were

initially. In other words, is 2a guaranteed to be before 2b after sorting the list [2a, 2b, 1]?

Try reasoning out or coming up with examples for these best and worst case runtimes!

*with hoare partitioning

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1A Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

CS61B Spring 2024

1A Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

Mergesort. One identifying feature of mergesort is that the left and right halves

do not interact with each other until the very end.

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

[1337, 192, 594, 129, 1000] 1429 [3291, 7683, 4242, 9001, 4392]

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

[1337, 192, 594, 129, 1000] 1429 [3291, 7683, 4242, 9001, 4392]

[192, 594, 129, 1000] 1337 1429 3291 [7683, 4242, 9001, 4392]

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

[1337, 192, 594, 129, 1000] 1429 [3291, 7683, 4242, 9001, 4392]

[192, 594, 129, 1000] 1337 1429 3291 [7683, 4242, 9001, 4392]

[129] 192 [594, 1000] 1337 1429 3291 [4242, 4392] 7683 [9001]

CS61B Spring 2024

1B Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

[1337, 192, 594, 129, 1000] 1429 [3291, 7683, 4242, 9001, 4392]

[192, 594, 129, 1000] 1337 1429 3291 [7683, 4242, 9001, 4392]

[129] 192 [594, 1000] 1337 1429 3291 [4242, 4392] 7683 [9001]

Quicksort. First item was chosen as pivot, so the first pivot is 1429. Everything to the left of 1429 is less
than 1429, everything to the right is greater than 1429. Chosen pivots are highlighted.

CS61B Spring 2024

1C Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

CS61B Spring 2024

1C Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

Insertion Sort. Insertion sort starts at the front, and for each item, move to the left as far as possible. This
creates a sorted section (highlighted) on the left of the array. These are the first few iterations of insertion

sort so the right side is left unchanged.

CS61B Spring 2024

1D Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

CS61B Spring 2024

1D Identifying Sorts

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

Heapsort. This one’s a bit more tricky. Basically what’s happening is that the

second line is in the middle of heapifying this list into a maxheap (in blue). Then we

continually remove the max and place it at the end.

CS61B Spring 2024

2A Conceptual Sorts

We have a system running insertion sort and we find that it’s completing faster than expected. What could
we conclude about the input to the sorting algorithm?

CS61B Spring 2024

2A Conceptual Sorts

We have a system running insertion sort and we find that it’s completing faster than expected. What could
we conclude about the input to the sorting algorithm?

The array is nearly sorted. Note that insertion sort has a best case runtime of Θ(N), which is when the
array is already sorted.

Example: Sorting the array [0 2 1 3 4] with insertion sort only requires one swap

CS61B Spring 2024

2B Conceptual Sorts

Give a 5 integer array that elicits the worst case runtime for insertion sort.

CS61B Spring 2024

2B Conceptual Sorts

Give a 5 integer array that elicits the worst case runtime for insertion sort.

A simple example is [5, 4, 3, 2, 1]. Any 5 integer array in descending order would work.

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

False, stability for sorting algorithms mean that if two elements in the list are defined to be equal, then
they will retain their relative ordering after the sort is complete. Heap operations may mess up the
relative ordering of equal items and thus is not stable. As a concrete example, consider the max heap: 21
20a 20b 12 11 8 7.

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

21

20a 20b

12 11 8 7

removeMax()

sorted result: [21]

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

7

20a 20b

12 11 8

removeMax()

sorted result: [21]

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

20a

12 20b

7 11 8

removeMax()

sorted result: [21]

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

8

12 20b

7 11

removeMax()

sorted result: [20a, 21]

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

20b

12 8

7 11

removeMax()

sorted result: [20a, 21]

CS61B Spring 2024

2C Conceptual Sorts

(T/F) Heapsort is stable.

20b

12 8

7 11

removeMax()

sorted result: [20b, 20a, 21]

CS61B Spring 2024

2D Conceptual Sorts

Compare mergesort and quicksort in terms of (1) runtime, (2) stability, and (3) memory efficiency for
sorting linked lists.

CS61B Spring 2024

2D Conceptual Sorts

Compare mergesort and quicksort in terms of (1) runtime, (2) stability, and (3) memory efficiency for
sorting linked lists.

- Mergesort has a better worst case runtime: Θ(NlogN) instead of Θ(N2)
- Mergesort is stable, maintains relative ordering of elements
- Easier to sort a linked list with mergesort

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(N log N) lower bound.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Never compares the same two elements twice.

Runs in best case Θ(log N)time for certain inputs.

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(N log N) lower bound.

Quicksort, Mergesort, Selection Sort. Insertion (sorted array), heapsort (equal items) are linear in the best
case.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Never compares the same two elements twice.

Runs in best case Θ(log N)time for certain inputs.

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(N log N) lower bound.

Quicksort, Mergesort, Selection Sort. Insertion (sorted array), heapsort (equal items) are linear in the best
case.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Mergesort, Heapsort are guaranteed O(N log N).

Never compares the same two elements twice.

Runs in best case Θ(log N)time for certain inputs.

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(N log N) lower bound.

Quicksort, Mergesort, Selection Sort. Insertion (sorted array), heapsort (equal items) are linear in the best
case.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Mergesort, Heapsort are guaranteed O(N log N).

Never compares the same two elements twice.

Quicksort, Mergesort, Insertion Sort.

Runs in best case Θ(log N)time for certain inputs.

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(NlogN) lower bound.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Never compares the same two elements twice.
Quicksort, Mergesort, Insertion Sort.

Runs in best case Θ(logN)time for certain inputs.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Quicksort: comparisons happen during pivot. Each item only serves as the pivot once.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Mergesort: comparisons happen during merging. Always compare items from different halves of the
recursion.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Mergesort: comparisons happen during merging. Always compare items from different halves of the
recursion.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Mergesort: comparisons happen during merging. Always compare items from different halves of the
recursion.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Mergesort: comparisons happen during merging. Always compare items from different halves of the
recursion.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Selection sort: comparisons happen when finding max. May compare same elements more than once.
max = arr[0]
for (int i = 1; i < arr.length; i++) {

if (arr[i] > max) {
max = arr[i]

}

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Insertion sort: comparisons happen when swapping to the front. Once an item is swapped to the front, it is
never swapped again.

CS61B Spring 2024

2E Conceptual Sorts

Never compares the same two elements twice.

Heapsort: an item can be compared multiple times during heapification and bubbling down.

CS61B Spring 2024

2E Conceptual Sorts

Bounded by Ω(NlogN)lower bound.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

Never compares the same two elements twice.

Runs in best case Θ(logN) time for certain inputs.
None - every sort looks at each element at least once

CS61B Spring 2024

3 Bears and Beds

Inputs:
● A list of Bears with unique but unknown sizes
● A list of Beds with unique but unknown sizes
● Note: these two lists are not necessarily in the same

order

Output: a list of Bears and a list of Beds such that the
ith Bear is the same size as the ith Bed

Example input:
Bears - [5 1 9 2 7], Beds - [2 1 5 7 9]

Example output: (multiple possible correct outputs)
Bears - [9 2 5 1 7], Beds - [9 2 5 1 7]

Constraints:
● Bears can only be compared to

Beds and we can get feedback on
if the Bed is too large, too small,
or just right.

● Beds can only be compared to
Bears and we can get feedback
on if the Bear is too large, too
small, or just right.

● Your algorithm should run in O(N
log N) time on average.

CS61B Spring 2024

3 Bears and Beds

Solution:
1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears - [5 1 9 2 7], Beds - [2 1 5 7 9]

Pivot = Bear 5

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears = [5 1 9 2 7]

Beds = [2, 1] [5] [7, 9]

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears = [5 1 9 2 7]

Beds = [2, 1] [5] [7, 9]

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears = [5 1 9 2 7]

Beds = [2, 1] [5] [7, 9]

Pivot Bed = 5

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears = [1, 2] [5] [9, 7]

Beds = [2, 1] [5] [7, 9]

CS61B Spring 2024

3 Bears and Beds

1. Choose a pivot bear randomly
2. Partition beds into: less than pivot bear, equal to pivot bear, greater than pivot bear
3. Only one bed will be equal to pivot bear (because beds/bears have unique sizes)
4. Choose that one bed as the pivot bed
5. Partition bears based on pivot bed
6. Repeat recursively like Quicksort

Bears = [1, 2] [5] [9, 7]

Beds = [2, 1] [5] [7, 9]

